Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(12): e2305298, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233196

RESUMO

High-capacity silicon (Si) materials hold a position at the forefront of advanced lithium-ion batteries. The inherent potential offers considerable advantages for substantially increasing the energy density in batteries, capable of maximizing the benefit by changing the paradigm from nano- to micron-sized Si particles. Nevertheless, intrinsic structural instability remains a significant barrier to its practical application, especially for larger Si particles. Here, a covalently interconnected system is reported employing Si microparticles (5 µm) and a highly elastic gel polymer electrolyte (GPE) through electron beam irradiation. The integrated system mitigates the substantial volumetric expansion of pure Si, enhancing overall stability, while accelerating charge carrier kinetics due to the high ionic conductivity. Through the cost-effective but practical approach of electron beam technology, the resulting 500 mAh-pouch cell showed exceptional stability and high gravimetric/volumetric energy densities of 413 Wh kg-1, 1022 Wh L-1, highlighting the feasibility even in current battery production lines.

2.
Small ; : e2306919, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063836

RESUMO

Rechargeable aqueous zinc-ion batteries (ZIBs) have emerged as an alternative to lithium-ion batteries due to their affordability and high level of safety. However, their commercialization is hindered by the low mass loading and irreversible structural changes of the cathode materials during cycling. Here, a disordered phase of a manganese nickel cobalt dioxide cathode material derived from wastewater via a coprecipitation process is reported. When used as the cathode for aqueous ZIBs , the developed electrode delivers 98% capacity retention at a current density of 0.1 A g-1 and 72% capacity retention at 1 A g-1 while maintaining high mass loading (15 mg cm-2 ). The high performance is attributed to the structural stability of the Co and Ni codoped phase; the dopants effectively suppress Jahn-Teller distortion of the manganese dioxide during cycling, as revealed by operando X-ray absorption spectroscopy. Also, it is found that the Co and Ni co-doped phase effectively inhibits the dissolution of Mn2+ , resulting in enhanced durability without capacity decay at first 20 cycles. Further, it is found that the performance of the electrode is sensitive to the ratio of Ni to Co, providing important insight into rational design of more efficient cathode materials for low-cost, sustainable, rechargeable aqueous ZIBs.

3.
Angew Chem Int Ed Engl ; 62(48): e202312928, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37842904

RESUMO

High-capacity Li-rich layered oxides using oxygen redox as well as transition metal redox suffer from its structural instability due to lattice oxygen escaped from its structure during oxygen redox and the following electrolyte decomposition by the reactive oxygen species. Herein, we rescued a Li-rich layered oxide based on 4d transition metal by employing an organic superoxide dismutase mimics as a homogeneous electrolyte additive. Guaiacol scavenged superoxide radicals via dismutation or disproportionation to convert two superoxide molecules to peroxide and dioxygen after absorbing lithium superoxide on its partially negative oxygen of methoxy and hydroxyl groups. Additionally, guaiacol was decomposed to form a thin and stable cathode-electrolyte interphase (CEI) layer, endowing the cathode with the interfacial stability.

4.
ACS Appl Mater Interfaces ; 14(36): 40793-40800, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36044267

RESUMO

A multifunctional electrolyte additive for lithium oxygen batteries (LOBs) was designed to have (1) a redox-active moiety to mediate decomposition of lithium peroxide (Li2O2 as the final discharge product) during charging and (2) a solvent moiety to solvate and stabilize lithium superoxide (LiO2 as the intermediate discharge product) in electrolyte during discharging. 4-Acetamido-TEMPO (TEMPO = 2,2,6,6-tetramethylpiperidin-1-yl)oxyl) or AAT was employed as the additive working for both charge and discharge processes (amphi-active). The redox-active moiety was rooted in TEMPO, while the acetamido (AA) functional group inherited the high donor number (DN) of N,N-dimethylacetamide (DMAc). Integrating two functional moieties (TEMPO and AA) into a single molecule resulted in the bifunctionality of AAT (1) facilitating Li2O2 decomposition by the TEMPO moiety and (2) encouraging the solvent mechanism of Li2O2 formation by the high-DN AA moiety. Significantly improved LOB performances were achieved by the superoxide-solvating charge redox mediator, which were not obtained by a simple cocktail of TEMPO and DMAc.

5.
ACS Appl Mater Interfaces ; 14(7): 9066-9072, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35132850

RESUMO

Quinones having a fully conjugated cyclic dione structure have been used as redox mediators in electrochemistry. 2,5-Ditert-butyl-1,4-benzoquinone (DBBQ or DB-p-BQ) as a para-quinone derivative is one of the representative discharge redox mediators for facilitating the oxygen reduction reaction (ORR) kinetics in lithium-oxygen batteries (LOBs). Herein, we presented that the redox activity of DB-p-BQ for electron mediation was possibly used for facilitating superoxide disproportionation reaction (SODR) by tuning the isomeric configuration of the carbonyl groups of the substituted quinone to change its reduction potentials. First, we expected a molecule having its reduction potential between oxygen/superoxide at 2.75 V versus Li/Li+ and superoxide/peroxide at 3.17 V to play a role of the SODR catalyst by transferring an electron from one superoxide (O2-) to another superoxide to generate dioxygen (O2) and peroxide (O22-). By changing the isomeric configuration from para (DB-p-BQ) to ortho (DB-o-BQ), the reduction potential of the first electron transfer (Q/Q-) of the ditert-butyl benzoquinone shifted positively to the potential range of the SODR catalyst. The electrocatalytic SODR-promoting functionality of DB-o-BQ kept the reactive superoxide concentration below a harmful level to suppress superoxide-triggered side reaction, improving the cycling durability of LOBs, which was not achieved by the para form. The second electron transfer process (Q-/ Q2-) of the DB-o-BQ, even if the same process of the para form was not used for facilitating ORR, played a role of mediating electrons between electrode and oxygen like the Q/Q- process of the para form. The ORR-promoting functionality of the ortho form increased the LOB discharge capacity and reduced the ORR overpotential.

6.
ACS Appl Mater Interfaces ; 14(1): 492-501, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34932302

RESUMO

High-energy density lithium-oxygen batteries (LOBs) seriously suffer from poor rate capability and cyclability due to the slow oxygen-related electrochemistry and uncontrollable formation of lithium peroxide (Li2O2) as an insoluble discharge product. In this work, we accommodated the discharge product in macro-scale voids of a carbon-framed architecture with meso-dimensional channels on the carbon frame and open holes connecting the neighboring voids. More importantly, we found that a specific dimension of the voids guaranteed high capacity and cycling durability of LOBs. The best LOB performances were achieved by employing the carbon-framed architecture having voids of 0.8 µm size as the cathode of the LOB when compared with the cathodes having voids of 0.3 and 1.4 µm size. The optimized void size of 0.8 µm allowed only a monolithic integrity of lithium peroxide deposit within a void during discharging. The deposit was grown to be a yarn ball-looking sphere exactly fitting the shape and size of the void. The good electric contact allowed the discharge product to be completely decomposed during charging. On the other hand, the void space was not fully utilized due to the mass transfer pathway blockage at the sub-optimized 0.3 µm and the formation of multiple deposit integrities within a void at the sur-optimized 1.4 µm. Consequently, the critical void dimension at 0.8 µm was superior to other dimensions in terms of the void space utilization efficiency and the lithium peroxide decomposition efficiency, disallowing empty space and side reactions during discharging.

7.
Small ; 18(8): e2105724, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34882975

RESUMO

A dendrite-free and chemically stabilized lithium metal anode is required for extending battery life and for the application of high energy density coupled with various cathode systems. However, uneven Li metal growth and the active surface in nature accelerate electrolyte dissipation and surface corrosion, resulting in poor cycle efficiency and various safety issues. Here, the authors suggest a thin artificial interphase using a multifunctional poly(styrene-b-butadiene-b-styrene) (SBS) copolymer to inhibit the electrochemical/chemical side reaction during cycling. Based on the physical features, hardness, adhesion, and flexibility, the optimized chemical structure of SBS facilitates durable mechanical strength and interphase integrity against repeated Li electrodeposition/dissolution. The effectiveness of the thin polymer film enables high cycle efficiency through the realization of a dendrite-free structure and a chemo-resistive surface of Li metal. The versatile anode demonstrates an improvement in the electrochemical properties, paired with diverse cathodes of high-capacity lithium cobalt oxide (3.5 mAh cm-2 ) and oxygen for advanced Li metal batteries with high energy density.


Assuntos
Fontes de Energia Elétrica , Lítio , Eletrodos , Galvanoplastia , Lítio/química , Polímeros
8.
Adv Mater ; 33(34): e2101726, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34288151

RESUMO

Despite their safety, nontoxicity, and cost-effectiveness, zinc aqueous batteries still suffer from limited rechargeability and poor cycle life, largely due to spontaneous surface corrosion and formation of large Zn dendrites by irregular and uneven plating and stripping. In this work, these untoward effects are minimized by covering Zn electrodes with ultrathin layers of covalent organic frameworks, COFs. These nanoporous and mechanically flexible films form by self-assembly-via the straightforward and scalable dip-coating technique-and permit efficient mass and charge transport while suppressing surface corrosion and growth of large Zn dendrites. The batteries demonstrated have excellent capacity retention and stable polarization voltage for over 420 h of cycling at 1 mA cm-2 . The COF films essential for these improvements can be readily deposited over large areas and curvilinear supports, enabling, for example, foldable wire-type batteries.

9.
ACS Appl Mater Interfaces ; 12(26): 29235-29241, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32496039

RESUMO

Lithium metal has been considered as an anode material to improve energy densities of lithium chemistry-based rechargeable batteries (that is to say, lithium metal batteries or LMBs). Higher capacities and cell voltages are ensured by replacing practically used anode materials such as graphite with lithium metal. However, lithium metal as the LMB anode material has been challenged by its dendritic growth, electrolyte decomposition on its fresh surface, and its serious volumetric change. To address the problems of lithium metal anodes, herein, we guided and facilitated lithium ion transport along a spontaneously polarized and highly dielectric material. A three-dimensional web of nanodiameter fibers of ferroelectric beta-phase polyvinylidene fluoride (beta-PVDF) was loaded on a copper foil by electrospinning (PVDF#Cu). The electric field applied between the nozzle and target copper foil forced the dipoles of PVDF to be oriented centro-asymmetrically and then the beta structure induced ferroelectric polarization. Three-fold benefits of the ferroelectric nano-web architecture guaranteed the plating/stripping reversibility especially at high rates: (1) three-dimensional scaffold to accommodate the volume change of lithium metal during plating and stripping, (2) electrolyte channels between fibers to allow lithium ions to move, and (3) ferroelectrically polarized or negatively charged surface of beta-PVDF fibers to encourage lithium ion hopping along the surface. Resultantly, the beta-PVDF web architecture drove dense and integrated growth of lithium metal within its structure. The kinetic benefit expected from the ferroelectric lithium ion transport of beta-PVDF as well as the porous architecture of PVDF#Cu was realized in a cell of LFP as a cathode and lithium-plated PVDF#Cu as an anode. Excellent plating/stripping reversibility along repeated cycles was successfully demonstrated in the cell even at a high current such as 2.3 mA cm-2, which was not obtained by the nonferroelectric polymer layer.

10.
ACS Appl Mater Interfaces ; 11(46): 43039-43045, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31621283

RESUMO

Although the volume of antimony tremendously expands during the alloying reaction with sodium, it is considered a promising anode material for sodium-ion batteries (SIBs). Repeated volume changes along the sodiation/desodiation cycles encourage capacity fading by triggering pulverization accompanying electrolyte decomposition. Additionally, the low cation transference number of sodium ions is another hindrance for application in SIBs. In this work, a binder was designed for the antimony in SIB cells to ensure bifunctionality and improve (1) the mechanical toughness to suppress the serious volume change and (2) the transference number of sodium ions. A cross-linked composite of poly(acrylic acid) and cyanoethyl pullulan (pullulan-CN) was presented as the binder. The polysaccharide backbone of pullulan-CN was responsible for the mechanical toughness, while the cyanoethyl groups of pullulan-CN improved the lithium-cation transfer. The antimony-based SIB cells using the composite binder showed improved cycle life with enhanced kinetics. The capacity was maintained at 76% of the initial value at the 200th cycle of 1C discharge following 1C charge, while the capacity at 20C was 61% of the capacity at 0.2C, implying that the composite binder significantly improved the sodiation/desodiation reversibility of antimony.

11.
ACS Nano ; 13(8): 9190-9197, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31319025

RESUMO

Reactive oxygen species or superoxide (O2-), which damages or ages biological cells, is generated during metabolic pathways using oxygen as an electron acceptor in biological systems. Superoxide dismutase (SOD) protects cells from superoxide-triggered apoptosis by converting superoxide to oxygen and peroxide. Lithium-oxygen battery (LOB) cells have the same aging problems caused by superoxide-triggered side reactions. We transplanted the function of SOD of biological systems into LOB cells. Malonic acid-decorated fullerene (MA-C60) was used as a superoxide disproportionation chemocatalyst mimicking the function of SOD. As expected, MA-C60 as the superoxide scavenger improved capacity retention along charge/discharge cycles successfully. A LOB cell that failed to provide a meaningful capacity just after several cycles at high current (0.5 mA cm-2) with 0.5 mAh cm-2 cutoff survived up to 50 cycles after MA-C60 was introduced to the electrolyte. Moreover, the SOD-mimetic catalyst increased capacity, e.g., more than a 6-fold increase at 0.2 mA cm-2. The experimentally observed toroidal morphology of the final discharge product of oxygen reduction (Li2O2) and density functional theory calculation confirmed that the solution mechanism of Li2O2 formation, more beneficial than the surface mechanism from the capacity-gain standpoint, was preferred in the presence of MA-C60.


Assuntos
Biomimética , Fontes de Energia Elétrica , Superóxido Dismutase/química , Superóxidos/farmacologia , Apoptose/efeitos dos fármacos , Catálise , Elétrons , Fulerenos/química , Lítio/química , Redes e Vias Metabólicas/efeitos dos fármacos , Oxigênio/química , Peróxidos/química , Espécies Reativas de Oxigênio/química , Superóxidos/química
12.
Nat Commun ; 10(1): 2364, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31147548

RESUMO

Alloys are recently receiving considerable attention in the community of rechargeable batteries as possible alternatives to carbonaceous negative electrodes; however, challenges remain for the practical utilization of these materials. Herein, we report the synthesis of germanium-zinc alloy nanofibers through electrospinning and a subsequent calcination step. Evidenced by in situ transmission electron microscopy and electrochemical impedance spectroscopy characterizations, this one-dimensional design possesses unique structures. Both germanium and zinc atoms are homogenously distributed allowing for outstanding electronic conductivity and high available capacity for lithium storage. The as-prepared materials present high rate capability (capacity of ~ 50% at 20 C compared to that at 0.2 C-rate) and cycle retention (73% at 3.0 C-rate) with a retaining capacity of 546 mAh g-1 even after 1000 cycles. When assembled in a full cell, high energy density can be maintained during 400 cycles, which indicates that the current material has the potential to be used in a large-scale energy storage system.

13.
Adv Mater ; 31(20): e1804909, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30387233

RESUMO

A gel polymer electrolyte (GPE) is a liquid electrolyte (LE) entrapped by a small amount of polymer network less than several wt%, which is characterized by properties between those of liquid and solid electrolytes in terms of the ionic conductivity and physical phase. Electrolyte leakage and flammability, demerits of liquid electrolytes, can be mitigated by using GPEs in electrochemical cells. However, the contact problems between GPEs and porous electrodes are challenging because it is difficult to incorporate GPEs into the pores and voids of electrodes. Herein, the focus is on GPEs that are gelated in situ within cells instead of covering comprehensive studies of GPEs. A mixture of LE and monomer or polymer in a liquid phase is introduced into a pre-assembled cell without electrolyte, followed by thermal gelation based on physical gelation, monomer polymerization, or polymer cross-linking. Therefore, GPEs are formed omnipresent in cells, covering the pores of electrode material particles, and even the pores of separators. As a result, different from ex situ formed GPEs, the in situ GPEs have no electrode/electrolyte contact problems. Functional GPEs are introduced as a more advanced form of GPEs, improving lithium-ion transference number or capturing transition metals released from electrode materials.

14.
Adv Sci (Weinh) ; 5(11): 1800851, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30479927

RESUMO

Highly porous thin films and nanostructure arrays are created by a simple process of selective dissolution of a water-soluble material, Sr3Al2O6. Heteroepitaxial nanocomposite films with self-separated phases of a target material and Sr3Al2O6 are first prepared by physical vapor deposition. NiO, ZnO, and Ni1- x Mg x O are used as the target materials. Only the Sr3Al2O6 phase in each nanocomposite film is selectively dissolved by dipping the film in water for 30 s at room temperature. This gentle and fast method minimizes damage to the remaining target materials and side reactions that can generate impurity phases. The morphologies and dimensions of the pores and nanostructures are controlled by the relative wettability of the separated phases on the growth substrates. The supercapacitor properties of the porous NiO films are enhanced compared to plain NiO films. The method can also be used to prepare porous films or nanostructure arrays of other oxides, metals, chalcogenides, and nitrides, as well as films or nanostructures with single-crystalline, polycrystalline, or amorphous nature.

15.
Nat Commun ; 9(1): 2924, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050036

RESUMO

High-theoretical capacity and low working potential make silicon ideal anode for lithium ion batteries. However, the large volume change of silicon upon lithiation/delithiation poses a critical challenge for stable battery operations. Here, we introduce an unprecedented design, which takes advantage of large deformation and ensures the structural stability of the material by developing a two-dimensional silicon nanosheet coated with a thin carbon layer. During electrochemical cycling, this carbon coated silicon nanosheet exhibits unique deformation patterns, featuring accommodation of deformation in the thickness direction upon lithiation, while forming ripples upon delithiation, as demonstrated by in situ transmission electron microscopy observation and chemomechanical simulation. The ripple formation presents a unique mechanism for releasing the cycling induced stress, rendering the electrode much more stable and durable than the uncoated counterparts. This work demonstrates a general principle as how to take the advantage of the large deformation materials for designing high capacity electrode.

16.
ACS Nano ; 12(2): 1739-1746, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29350526

RESUMO

We show that a high energy density can be achieved in a practical manner with freestanding electrodes without using conductive carbon, binders, and current collectors. We made and used a folded graphene composite electrode designed for a high areal capacity anode. The traditional thick graphene composite electrode, such as made by filtering graphene oxide to create a thin film and reducing it such as through chemical or thermal methods, has sluggish reaction kinetics. Instead, we have made and tested a thin composite film electrode that was folded several times using a water-assisted method; it provides a continuous electron transport path in the fold regions and introduces more channels between the folded layers, which significantly enhances the electron/ion transport kinetics. A fold electrode consisting of SnO2/graphene with high areal loading of 5 mg cm-2 has a high areal capacity of 4.15 mAh cm-2, well above commercial graphite anodes (2.50-3.50 mAh cm-2), while the thickness is maintained as low as ∼20 µm. The fold electrode shows stable cycling over 500 cycles at 1.70 mA cm-2 and improved rate capability compared to thick electrodes with the same mass loading but without folds. A full cell of fold electrode coupled with LiCoO2 cathode was assembled and delivered an areal capacity of 2.84 mAh cm-2 after 300 cycles. This folding strategy can be extended to other electrode materials and rechargeable batteries.

17.
Adv Mater ; 30(7)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29271509

RESUMO

A crumply and highly flexible lithium-ion battery is realized by using microfiber mat electrodes in which the microfibers are wound or webbed with conductive nanowires. This electrode architecture guarantees extraordinary mechanical durability without any increase in resistance after folding 1000 times. Its areal energy density is easily controllable by the number of folded stacks of a piece of the electrode mat. Deformable lithium-ion batteries of lithium iron phosphate as cathode and lithium titanium oxide as anode at high areal capacity (3.2 mAh cm-2 ) are successfully operated without structural failure and performance loss, even after repeated crumpling and folding during charging and discharging.

18.
Sci Rep ; 7(1): 17635, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247227

RESUMO

Stabilizing superoxide (O2-) is one of the key issues of sodium-air batteries because the superoxide-based discharge product (NaO2) is more reversibly oxidized to oxygen when compared with peroxide (O22-) and oxide (O2-). Reversibly outstanding performances of sodium-oxygen batteries have been realized with the superoxide discharge product (NaO2) even if sodium peroxide (Na2O2) have been also known as the discharge products. Here we report that the Lewis basicity of anions of sodium salts as well as solvent molecules, both quantitatively represented by donor numbers (DNs), determines the superoxide stability and resultantly the reversibility of sodium-oxygen batteries. A DN map of superoxide stability was presented as a selection guide of salt/solvent pair. Based on sodium triflate (CF3SO3-)/dimethyl sulfoxide (DMSO) as a high-DN-pair electrolyte system, sodium ion oxygen batteries were constructed. Pre-sodiated antimony (Sb) was used as an anode during discharge instead of sodium metal because DMSO is reacted with the metal. The superoxide stability supported by the high DN anion/solvent pair ([Formula: see text] -/DMSO) allowed more reversible operation of the sodium ion oxygen batteries.

19.
ACS Appl Mater Interfaces ; 8(6): 4042-7, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26807998

RESUMO

Molecular structures of polysaccharide binders determining mechanical properties were correlated to electrochemical performances of silicon anodes for lithium-ion batteries. Glycosidic linkages (α and ß) and side chains (-COOH and -OH) were selected and proven as the major factors of the molecular structures. Three different single-component polysaccharides were compared: pectin for α-linkages versus carboxylic methyl cellulose (CMC) for ß-linkages from the linkage's standpoint, and pectin as a COOH-containing polymer and amylose as its non-COOH counterpart from the side chain's standpoint. Pectin was remarkably superior to CMC and amylose in cyclability and rate capability of battery cells based on silicon anodes. The pectin binder allowed volume expansion of silicon electrodes with keeping high porosity during lithiation due to the elastic nature caused by the chair-to-boat conformation in α-linkages of its backbone. Physical integrity of pectin-based electrodes was not challenged during repeated lithiation/delithiation cycles without crack development that was observed in rigid CMC-based electrodes. Covalent bonds formed between carboxylic side chains of pectin and silicon surface oxide prevented active silicon mass from being detached away from electric pathways. However, hydrogen bonds between hydroxyl side chains of amylose and silicon surface oxide were not strong enough to keep the silicon mass electrochemically active after cyclability tests.


Assuntos
Técnicas Eletroquímicas , Lítio/química , Polissacarídeos/química , Silício/química , Configuração de Carboidratos
20.
Sci Rep ; 5: 14433, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26395407

RESUMO

Silicon anode materials have been developed to achieve high capacity lithium ion batteries for operating smart phones and driving electric vehicles for longer time. Serious volume expansion induced by lithiation, which is the main drawback of silicon, has been challenged by multi-faceted approaches. Mechanically rigid and stiff polymers (e.g. alginate and carboxymethyl cellulose) were considered as the good choices of binders for silicon because they grab silicon particles in a tight and rigid way so that pulverization and then break-away of the active mass from electric pathways are suppressed. Contrary to the public wisdom, in this work, we demonstrate that electrochemical performances are secured better by letting silicon electrodes breathe in and out lithium ions with volume change rather than by fixing their dimensions. The breathing electrodes were achieved by using a polysaccharide (pullulan), the conformation of which is modulated from chair to boat during elongation. The conformational transition of pullulan was originated from its α glycosidic linkages while the conventional rigid polysaccharide binders have ß linkages.


Assuntos
Módulo de Elasticidade/fisiologia , Fontes de Energia Elétrica , Eletrodos , Lítio/química , Silício/química , Condutividade Elétrica , Técnicas Eletroquímicas , Glucanos/química , Dureza/fisiologia , Conformação Molecular , Nanotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...